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Self-excited oscillations of weakly non-linear systems with distributed parameters are investigated. From the unified standpoints 
of the Lyapunov-Poincar6 perturbation method, the limit cycles are determined in a constructive manner and conditions are 
found for the existence and stability of “quasi-linear” self-excited oscillatory modes of behaviour for two classes of mechanical 
objects, namely, a model of the transverse vibrations of a rotating thin shaft of circular cross-section, taking into account small 
internal and non-linear external viscous friction, and a two-dimensional model of the linear vibrations of a string connected at 
its midpoint to a self-excited oscillating circuit (an oscillator) of the Van der Pol type. In both models a “buffemess phenomenon” 
is established: the systems may have several stable limit cycles, depending on the values of the parameters (the angular velocity 
of rotation of the shaft or tension forces in the string) and corresponding to different oscillatory modes of distributed systems. 
8 2001 Elsevier Science Ltd. All rights reserved. 

A bufferness phenomenon occurs in a system of partial differential equations if, subject to a suitable 
choice of the parameters, one can guarantee the existence in the system of any flxed number of attractors 
of the same type - equilibrium states, cycles (i.e. stable time-periodic solutions), tori, etc. 

Based on investigations carried out to date, we can state that the phenomenon is fairly universal 
and is observed in mathematical models relating to various realms of nature: ecology [l, 21, radio- 
physics [3-51, etc. In particular, a buffemess phenomenon in radio-physics was predicted by A. A. 
Vitt [3] as far back as the early 19301, and the results of much later research [6-g] imply that it is 
characteristic for a wide class of so-called self-excited generators with a section of long line in the 
feedback loop. 

The aim of this paper is to show that the buffemess phenomenon is realizable in mathematical models 
of mechanical systems with distributed parameters. 

1. THE BUFFERNESS PHENOMENON IN THE PROBLEM OF THE 
TRANSVERSE VIBRATIONS OF A ROTATING SHAFT 

Formulation of theproblem. Consider a mechanical system consisting of a flexible shaft of constant cross- 
section, of length 1, rotating at a constant angular velocity o. To describe a mathematical model of this 
system, we introduce coordinates, directing the x axis along the axis of the shaft; the ~1, uz axes will be 
considered fixed in a plane perpendicular to the axis of rotation (Fig. 1). Let ul(t, x), u2(t, x) be the 
coordinates of the displacement at time t of an arbitrary point of the shaft axis relative to the equilibrium 
positionui = 242 = 0. Then, assuming that the shaft is made of a viscoelastic material and that the plane 
cross-section hypothesis holds, we obtain the following system of equations for the functions 
ui(t,x)(j = 132) [9] 

u = col(u,, u,), A,, = 
0 1 w I -I 0 

(1.1) 

where U is the flexural stiffness of the shaft, M is its mass per unit of length, and x1, x2 are the coefficients 
of internal and external viscous friction. 
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Fig. 1 

We will assume that the ends of  the shaft are suspended on hinges. Then the following boundary 
conditions must be added to system (1.1) in the interval 0 ~< x ~ 1: 

~2 u ~2 u 

u  -71x=o = = o 
(1.2) 

We will assume that the coefficients M, E J, and ×1 are constant, while the coefficient of external friction 
: 2 ×2 depends on r = x:u 1 + u22 as follows [9]: 

x 2 = ot I + 0~2 r2, Gj = const > 0, j = 1, 2 (1.3) 

(by the symmetry of the problem, x 2 must indeed depend on r 2, and Eq. (1.3) is the simplest 
approximation of such a dependence in the neighbourhood of the point r = 0). Finally, keeping relations 
(1.3) in mind and successively normalizing 

xll---~ x, t4EJl(Ml 4) ---~t, t2~/a21(XlEd)u--~u 

we obtain the following equation instead of (1.1) (where I denotes the identity matrix) 

32u 3~u ~Su 
at z [au+(u, u)u]=0 (1.4) 

where 

e = x l 4 E J  l(Ml4), f ~ = 0 ) / 2 ~ ,  a =oql41(xlEd) (1.5) 

As the phase space (the space of the initial data (u, Ou/,Ot)) of the boundary-value problem (1.2), 
4 2 02 2 4 2 4 (1.4) we take l ~  ([0, 1]; R ) × W2 ([0, 1]; R ), where 1~'~, WE are the closures in the metrics of W~ and 

W22 , respectively, of the linear space of smooth vector-functions satisfying boundary conditions (1.2) 
(by virtue of the normalization, we are now considering (1.2) with I = 1). 

In order to prove that the mixed problem corresponding to problem (1.2), (1.4) has a locally unique 
solution in the phase space just indicated, we first put 

Ou d2u 
h i =Bu, h 2 =-~t' BU=-dx"-T 

As a result, we obtain the following system in the space E = 1~22 ([0, 1]; R 2) × l~r? ([0, 1], R2) 

dh / dt = ~h + ¢F(h) (1.6) 

where 
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h =col(h~, h2), ~ =  AoB+F.AIB+EA2 B2 +eaA 2 

0 0  oll °, 011 °,11 
F(h)=col(0,-(B-thl,  B-Ii~)h2-2(h2, B-thl)B-Ihl) 

(1.7) 

The next stage of the proof involves a consideration of the closed linear operator ~ with a domain 
of definition dense in E. Relying on the Fourier method with respect to the system sin n~x(n  = 1, 2, 
... ), it can be shown that the eigenvalues of the operator ~ are the roots of the equations 

k 2 + 8 ( a + n 4 n 4 ) k + n 4 n ( ( l - i e . Q ) = O ,  n= l ,  2 . . . .  (1.8) 

and of the equations obtained from (1.8) by complex conjugation. Note that the roots of these equations 
fall into two sequences 3.1, X~ and 3.~, ;~2 n (n = 1, 2 . . . .  ) such that 

ReLln ---~--~, L~ -->-(l-ieK~)le, n--)** 

Hence it follows that the operator ~ generates in E an analytic semigroup T(t), t I> 0, of linear bounded 
operators strongly continuous at the point t = 0. 

In the concluding stage of the proof we consider system (1.6) together with an arbitrary initial condition 
h It=0 = h0 e E and transfer, using the semigroup T(t), from this initial-value problem to an integral 
equation 

t 

h(t) = T(t)h o + 8~ T(t  - "OF(h(%))d'c (1.9) 
o 

Taking into account that the superposition operator F( . )  : E ---> E is smooth in Frechet's sense, and 
applying the principle of contraction mapping to Eq. (1.9) in a certain sphere of the space C([0, to]; E), 
where to > 0 is suitably small, we obtain the required fact. 

The reader's attention is drawn to the fact that if t > 0 the solutions we have constructed of problem 
(1.2), (1.4) are continuously differentiable with respect to t, as may be verified by applying the standard 
technique of "inflation" of smoothness to integral equation (1.9) (see, e.g. [10]). The smoothness of 
these solutions with respect to x is not changed, remaining the same as at t = 0. 

Let us investigate the stability of the trivial equilibrium position of problem (1.2), (1.4). Analysis of 
Eqs (1.8) shows that it is stable provided that 

f l <m in f l , ,  f~, = (on+a /o  n, (on =n2R2 (1.10) 

As the parameter ~ is increased, each time it passes through the critical values f~n, n/> 1, exactly one 
complex root 3. = 3.n(g2, e), 3.,(£2~, e) = iCOn of Eq. (1.8) passes from the left complex half-plane into the 
right half-plane and remains there for all fl > ~n. 

The problem that immediately comes to mind is whether t-periodic solutions of problem (1.2), (1.4) 
exist that bifurcate from zero as the angular velocity of rotation ~ is increased and passes through its 
critical values [2 n, n I> 1, and whether these solutions are stable. This problem will now be investigated 
in the case when e a 1 and the parameters ~2 and a are of the order of unity. 

The existence o f  self-similar cycles. Putting ~ = Ul + iu2, we rewrite the boundary-value problem (1.2), 
(1.4) in complex form 

Ot 2 - re.Q) 3--~- + e ~t--~x4 + e ~t  [a~+ I ~ 12 ~]=0 

2 2 
, ' = o  (1.11) 

assuming that ~ satisfies the complex-conjugate boundary-value problem. A self-similar cycle of the 
problem thus obtained is a periodic solution of the form 
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~(t, x, E ) = ~ ( x ,  e)exp(i~(e)t) (1.12) 

The problem of the existence of such a solution reduces to finding the complex amplitude ~(x, e) and 
real constant W from the non-linear boundary-value problem 

,, d4~ 
(1 + ie(~! - ~ ) ) ~ x  4 - ¥ 2 ~  + i c y ( a +  I ~ 12)~ = 0 

(1.13) 

Ix=o=,,,,=,- ax I,=o- ax=l,=, =o 

Now, then e = 0 problem (1.11) admits of trigonometric solutions 

= e x p (+ i (o , t ) s i nn~x ,  n >~ 1 

Hence, if e > 0 is small, it is natural to look for cycles (1.12) with frequencies W close to __.(%, 
n~>l .  

We will first consider an algorithm for constructing the asymptotic form of self-similar cycles (1.12). 
To that end, we fix an arbitrary natural number n and consider (1.13) with 

= (o,,o(e), o (e )  = l + sol + E2(~2 +... 

~(X, F.)=riosinnltx+l~l(x)+r2~2(x)+...  (1.14) 

where rio, 01, o2, etc. are unknown real constants. Equating the coefficients of e, we obtain the boundary- 
value problem 

d2 '] =0 (1 .15)  L~, =A(x),  P.I Ix--0..--I=--;'T 
dx Ix=0.x=l 

where 

4 

L =  d 2 fl = [ (~ - ( o , , ) ( o . - a  " q 2 s i n a n l t x - 2 i ( o , o l ] i t % q o s i n n r t r  dx-.- T -(o,,, 

The condition for this problem to be solvable, i.e. for the functionsfl(x) and sin n~x to be orthogonal 
in the sense of L2(0, 1), leads in turn to the equality 

ton ( f~  - l'~n )~o  - 2ito , Gz rlo - 3rl~ / 4 = 0 (1 .16)  

Let us assume that the condition for self-excitation of self-excited oscillations at frequency o),, i.e. 
the inequality 

> D,,, (1.17) 

is satisfied (see (1.10)). Then we find from (1.16) that 

o~=0, ~o = ~ % o . ( ~ - ~ . )  (1.18) 

and then, using (1.15), we define the function 

~t(x) = iqo a 
320(0,, 

sin 3n~.r + 111 sin n~r (1.19) 

where ril is an arbitrary real constant. 
Note that this algorithm may be continued indefinitely: the solvability of the linear inhomogeneous 

boundary-value problems analogous to (1.15) for ~j (x ) , j  t> I is obtained by correcting the frequency aj 
and the term TIj_ 1sin nm to within which ~_ l(x) is determined. When that is done, unlike bifurcation 
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equation (1.16) for riy_ 1, oj, j >~ 2, one obtains linear inhomogeneous equations of the form 

-3/~ri2rij_ I -2io).rioO j = q)j, j ~> 2 (1.20) 

from which these constants are uniquely determined. 
The construction just described is made rigorous by the following proposition. 

Theorem 1. Let the parameter ~ be fixed and satisfy condition (1.17). Then, for all sufficiently small 
s, boundary-value problem (1.11) has a self-similar cycle (1.12), whose amplitude ~(x, e) and frequency 
¥(s) are analytic functions of their arguments and satisfy the equalities 

~(x, 0) = ri0 sin nnx; ~(e) = to.o(e), o(0) = 1, o'(0) = 0 (1.21) 

the constant 110 being defined by the second equality of (1.18). 

Proof. Divide the equation of (1.13) by I + ie(~ - 2), and then take it together with its own complex 
conjugate and substitute 

= rl0 sin n~x + ~ .  (x) + ~2hj, ~ = rlo sin nrtx + 4 ,  (x) + ~2h 2 

= ¢o,(1 + E26) (1.22) 

where the constant 6 and the constant ~1 occurring in the definition of function ~l(x) (see (1.19)) are 
assumed to be arbitrary, into the resulting system of equations. This finally yields an equation 

I'lh =G(x, h, 6, riI, e) (1.23) 

where 

h=col(h I, h2), FI=coI(L, L), G(x, h, 6, ri=, 0)=col(A, A) 

A = ( 0 2 [ i ( ~  - ( 0 . ) ~ l  ( x )  + ( 2 5  - ( f ~  - co .  )2)110 sin mr.x] - 

(1.24) 

- i t o .  [a~l (x)  + (2~t (x)  + ~l (x))rio 2 sin a n/r.x] + 

+ (o. (f~ - o~. ) (a + rig sin 2 n/ix)rio sin n~x (1.25) 

(the operator L is the same as in problem (1.15)). 
It can be seen that in the subspace 110 C ~4  x 1~24 of vector-functions (with complex components) 

orthogonal in the sense of L2(0, 1) x L2(0, 1) to the vector-functions 

elsinn~x, e2sinn~x; el=col(l, 0), e2=col(0, 1) (1.26) 

the operator I-I has a bounded inverse. Therefore, suitably correcting the inhomogeneity G and inverting 
I-I, we change from Eq. (1.23) to an integral equation in the space V0 

h = II -I (G - ylei sin nrtx - Y2e2 sin nn, x) (1.27) 

where 

I 

Yj =2J (G, ei)sinn~xdx, j =  1,2 (1.28) 
o 

Note that the right-hand side of Eq. (1.27) generates in II0 a non-linear operator F that is an analytic 
function both ofh and of the parameters 8, 111 and e. In addition, it follows from (1.24) and (1.25) that 
the operator F maps some sphere about zero in the space V0, of radius independent of s, into itself and 
is a contraction operator in that sphere (with contraction constant of the order of s). Hence, by the 
principle of contraction mapping (for a suitable version of this principle see, e.g., [11]), Eq. (1.27) 
uniquely defines a vector-function which is analytic in s, 6 and 1"]1 (in the metric of V0) 
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h0 =col(hl°(X, 8, ri~, e), h°(x ,  8, tit, e)) (1.29) 

In addition, it follows from the structure of Eqs (1.23) and (1.27) that 

ho = h-;0 (1.30) 

The final stage of the proof involves determining the arbitrary real constants 6 and ri1 from the 
condition that the corrections to the inhomogeneity G, occurring in (1.27), should vanish. Substituting 
vector-function (1.29) into (1.28), we obtain complex-valued functions ,0(6, rh, e)(j  = 1, 2), analytic in 
all their variables, where, by virtue of the structure of  G and equality (1.30), we have 3'2 = ~1. Hence 
the conditions 3'1 = 3'2 = 0 are equivalent to the requirement that 

Tl( 8, rit, E) = 0  (1.31) 

To analyse Eq. (1.31), we again appeal to relations (1.24) and (1.25), from which it follows that when 
e = 0 it converts into the following analogue of Eq. (1.20) 

_ a~ ~q02rii _ 2ito,ri08 = iari o ( ~  _ to n ) 

which obviously has the unique solution 

ril=O, 8=8,; 8,=a(ton-~)l(2to n) 

Hence, in turn, we conclude that the Implicit Function Theorem is applicable to Eq. (1.31) at the point 
e = ril = 0, 6 -- 6.. Thus, condition (1.31) uniquely defines the following functions, which are analytic 
in the neighbourhood of e = 0 

r i l=~l(e) ,  a= 8 (e ) : r i l ( 0 )=0 ,  8 (0 )=a .  (1.32) 

And finally, substituting expressions (1.29) and (1.32) into system (1.22), we obtain the required self- 
similar cycle of problem (1.11). 

Periodic solutions of the form (1.12) have a readily understandable mechanical interpretation. 
Arbitrarily fixing a numberx0 ~ (0, 1), consider the point of the shaft axis in the sectionx = x0. It follows 
from solution (1.12) that this point will move in the plane x = x0 about its equilibrium position 
Ul = u2 = 0, describing a circle of radius r = ] ~(x0, e), at constant angular velocity ~(e) (Fig. 2). This 
motion is called steady asynchronous precession [9]. The term "asynchronous" here means that, by 
condition (1.17), the angular velocity f2 at which the shaft will rotate about its axis is different from the 
angular velocity ~(e), ~(0) = con of the precessional motion. 

Note that problem (1.11) certainly has no self-similar cycles (1.12) with frequencies ~(e), 
~(0) = --to n. This is obvious from a mechanical standpoint, since the rotation of the shaft about its 
axis and the precession cannot take place in the same direction. This is also mathematically obvious: 
re2Placing to n by -to n in (1.14), we obtain an equation for the amplitude rl0 which has no real solutions: 
ri0 = "-4ton(f2 + f~,)/3. 

U 

f2 

i / / / "  / I ~ - 

r 
0 I I u !  

I 

\ I 
/ 

/ \ 

Fig. 2 
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The stability o f  self-similar cycles. To investigate the stability of the cycle (1.12), (1.21) for arbitrary 
fixed n, we consider the boundary-value problem 

= Z  =o X2v + ~.Fllu +rl2v =0, v I~=0=v I~=l=~-y 
x=0 x=l 

(1.33) 

where 

u =col(uj, U2), l'Ilu 2iV(e)Qo v d4u +e[Qj(x,e)+al]u 
= +edx---- T 

rl2v =[l+ie(V(e)-g~)Qol -¥2(e)v  +ie~(e)Qo[Ql(x, e )+al lv  

[I; 'll Q0=diag{l,-1}, Qt = i f ,  p=21{(x, e)l 2, q={Z(x ,  e) 

We emphasize that eigenvalue problem (1.33) is obtained from Eq. (1.11) and the complex conjugate 
of (1.11) by the substitutions 

~ exp(-i¥(e)t) ---> ~, ~exp(iv(e)t)---> 

which transform the cycle (1.12) into an equilibrium state ({(x, e), ~(x, e)), followed by linearization at 
this equilibrium state. We also note that, by construction, problem (1.33) will always have the eigenvalue 
zero, to which the eigenfunction col(i{, - i~) corresponds. Finally, the reader's attention is drawn to 
the fact that if problem (1.33) has an eigenvalue ~0 with eigenfunction col(o °, o°), then it will also have 
an eigenvalue Z0 with eigenfunction col(o-~, o-~). 

When e = 0 the spectrum of problem (1.33) consists of the group of eigenvalues i(Om - co,), 
i (o m + On) , m t> 1, with eigenfunctions el sin taro: and e2 sin mroc respectively (the vectors el and e2 are 
the same as in (1.26)), together with the complex-conjugate eigenvalues. Therefore, an investigation 
of the stability of cycle (1.12), (1.21) in turn involves constructing the asymptotic form of these eigenvalues 
for small e. 

An algorithm to that end will first be described for the case of odd n. With m # n, m = 1, 2 . . . . .  
we substitute the following expressions into (1.33) 

u = ej sinmroc+EhJ(x)+ .... ~. = i(o m + (-I)J(on) + £1.t~ + .... j = I, 2 (1.34) 

As a result, after equating the coefficients of e, we obtain boundary-value problems 

Ljh~ = cOj(x), h~ Ix=0.x=l = d _ ~  = 0, j = 1, 2 (1.35) 
ax2 Ix=0.x=l 

where 

d 4 
Lj = - - ~ - H j ,  H I =diag{o 2, (o , . -2o . )2 } ,  H2 =diag{(o,. +2o . )  z, o) 2} 

COj = - io , .  [2g~ + co,. (~m + (- l)J ~)]ej sin mroc - 

-/[(mr. + (-l)Jo.)Qa (x, 0) + o.QoQ I (x, 0)]ej sin m~x 

Considering the inhomogeneities cOy(x), we stipulate that the coefficients of ej sin mnx should vanish; 
this yields 

g~ = ~ [ o , , ( ( - l ) J - ' G - n , , ) - % t o , ( g i - n , ) ] ,  j = l, 2 (1.36) 

and the functions h~ may then be determined from problem (1.35) as linear combinations of harmonics 
sin m~x, sin(m _+ 2n)Ttr with vector coefficients. We emphasize that this is possible by virtue of the 
inequalities 



186 A. Yu Kolesov and N. Kh. Rozov 

2 2 2 ((.0,. +2 (0 . )  2 :¢0, (O,._+2n - ( ( 0  m 2CO.) 2 :;t:O (0,. - -(OO,. +20 ) . )  2 :;cO, ~m_+2. - 

which follow from the assumption that n is odd and from the condition rn ~ n. 
If m = n, j = 2, formulae (1.34) are unchanged, and the operations just described then yield the 

equality 

p2 = - e % ( 3 ~ -  ~ . ) / 2  (1.37) 

If m = n, j = 1, then in the first approximation, that is, when e = 0, we have to deal with a zero 
eigenvalue of multiplicity 2; hence we have two linearly independent eigenfunctions ek sin n~x, 
k = 1, 2. Here, therefore, instead of (1.33), we consider the matrix boundary-value problem 

d2V 
VA 2 +I'IIVA+I-I2V =0, V ,=o.~=l= .-":~1 =o.,__lax-i =0 (1.38) 

where V and A are square matrices and the operators 1-I1 and 1-12 are applied separately to each matrix 
column; for example, if V = [th(x), 02(x)], then I-I2V = [I-I201, 1-I202]. Further, setting 

A = EAI + .. . .  V = Vl(x) + EV2(x) + ... 

V I = [e l sin n~x, e 2 sin nr~r] (1.39) 

in problem (1.38) and operating as described above, for the columns 112 we obtain linear inhomogeneous 
boundary-value problems analogous to (1.35), and the elements of the constant matrix Az are determined 
from the conditions that these problems be solvable. Omitting the relatively simple calculations, we 
present the final result 

1 o.,11, : ,40, 
Note that one eigenvalue of the matrix (1.40) is zero (since 1.33) is linearization at a cycle), and the 

other is negative. 
Now let us assume that n is even: n = 2m 0. It is obvious that if m ~ m0, 3m0, and also in the cases 

m = mo, j = 1, and m = 3mo, j = 2, all the constructions described above remain valid. The only cases 
requiring new attention are m = 3m0, j = 1, and m = m0, j = 2. Indeed, if ~ = 0, we then have to deal 
with a double eigenvalue ~, = 5iCOmo, to which correspond linearly independent eigenfunctions 
ez sin 3m0nx, e2 sin m0nx. Therefore, to determine the asymptotic form of these eigenvalues, we substitute 
square matrices analogous to (1.39) into problem (1.38) 

A =SitOmol + e A  I + . . . .  V =  Vl(x)+ eV2(x) +. . .  (1.41) 

V I = [e I sin3m01tx, e 2 sin m0~x], V 2 = [u21(x), u99(x)] 

A I=llz,yk~ j ,  k = l ,  2 

and equate the coefficients of e. As a result, we obtain the boundary-value problems 

d2o2jJ 
L0u2j=~0j(x ), u2j lx=ox=l=--S~_~ J =0, j = l ,  2 

' dx" J/=0.x=l 

where 

4 
2 Lo = d-~'4- diag{co],,, COmo} 

dx o 

~o~ = -i(2co3,.o~. l tel sin 3mo~c + 2(Omo~.21e 2 sin m o ~ )  + 

+im2mo ( Q -  [13m o )e I sin 3mor~X - ico,. o (51 + 4Q o)Ql (x, O)e I sin 3molr~ 
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q)2 = -i(2(OSmo~'12el sin 3mo/r'x + 20)too ~'22e2 sin mOV~X ) -- 

--i(02o ( ~  + £~'~o )e2 sin molrac - i ( O m o  (51 + 4Q o)QI (x,  O)e 2 sin mo/r.x 

The analysis of these problems is standard" first, considering the inhomogeneities ~o- (j = 1, 2) and • j 

equating the coefficients of el sin 3rn0n~c, e2 sin m0n~x to zero, we find the elements of A1 and then also 
determine the functions o2/(j = 1, 2). The corresponding calculations show that 

kll P'~mo' 7~22 2 (1.42) = =[J'm O' ~21 = ~'12 = --(l)2rao('~--'~2rao ) / 6  

(for the definition of btJm see (1.36) and (1.37)). 
Thus, the stability of the cycle (1.12), (1.21) in the case of odd n depends on the signs of the numbers 

~t~ with m I> 1, m * n determined in (1.36) (the numbers g2 need not be considered, since they are 
negative). In the case n = 2m0, the stability of the cycle depends on the signs of the numbers ~t I with 
m * 3m0, 2m0 and on the signs of the eigenvalues of the matrix with elements (1.42). Let us assume 
that none of these numbers vanishes and that m. of them are positive. Then the following proposition 
is true. 

Theorem 2. The cycle (1.12), (1.21) of boundary-value problem (1.11) is exponentially orbitally stable 
if rn. = 0 and dichotomic if m. > 0, in which case the dimension of the unstable manifold is 2m. + 1. 

Proof. Let ~.~(e) (j = 1, 2) denote the eigenvalues of problem (1.33) that become i(tOm + (-1)iron) 
when e = 0. The validity of asymptotic equalities (1.34) for any fixed m, and of equalities (1.39) and 
(1.41), is readily established along the same lines as the analysis in non-linear problem (1.13). It 
should be emphasized, however, that these equalities are by no means uniformly applicable for all m. 
Therefore, in order to determine the asymptotic behaviour of ~.~(e) (j = 1, 2) as m ~ 0% one resorts 
to an auxiliary boundary-value problem, obtained from (1.33) by dropping the terms containing Ql(x, 
e), which are not essential in this situation. The spectrum of this latter problem consists of the roots of 
the equations obtained from (1.8) by replacing n by m, and ~. by)~ + iy(e). Hence, in turn, we conclude 
that, first 

~Jm(e)--~ -[1 + ie (¥ (e ) -~ ) ] / e ,  Re;~,am(E) ---> -oo, m --~oo 

and, .second, we determine a sufficiently large natural number N, independent of e, such that 
Re ~.~(e) < 0 (j = 1, 2) for all m ~> N. 

Thus, the stability of the cycle (1.12), (1.21) depends only on a finite number of eigenvalues 
~Jm(e) (j = 1, 2, m ~< N). It is therefore determined by the signs of the numbers ~t~, and also by the 
eigenvalues of the matrix (1.42) in the case of odd n. 

Conclusions. Let us analyse the conditions for stability of a cycle (1.12), (1.21) with fixed n in the 
case a = 0 that are most favourable for the generation of self-excited oscillations, since all conclusions 
obtained in that special case remain valid for a > 0. By the foregoing discussion, if a = 0 and n is odd, 
these conditions are 

P(c, mZ/n2)<O, m=1,2 ..... m a n  

P ( a ,  y)  = Gy - y2 _ 4 ( 0  - 1)/3, 0 = ~lto.  > 1 

(1.43) 

But ifn = 2m0, conditions (1.43) must hold for m ~ 2m0, 3m0 and, in addition, we have an additional 
condition, implying that the Hurwitz condition is satisfied for the matrix (1.42) 

( ! 1 0  179V 19 61~ ! 
R(°)--t, T2 - 48 (°-')= >0 

(1.44) 

Investigation of conditions (1.43) and (1.44) shows that forn = 1, 2, 3 the stable ranges of the cycles 
(1.12), (1.21) are given by the respective inequalities 

n 2 <~<11n2 /2 ,  6Dt2/13<~<4~20,,  23rc2/2<i'2<37rc 2 (1.45) 
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where o. = 3.681 ...  is the largest root of the equation R(o) = 0. In particular, it follows from (1.45) 
that the stable cycles (1.12) and (1.21) with n = 1, 2 coexist in the interval (t2,, g2.,), and the same is 
true of the stable cycles with n = 2, 3 in the interval (g2 .... g2 . . . .  ), where 

~ ,  =46.31 .... f~** = 54.28 .... f~*** = 113.50 .... f~ . . . .  =!45.32.. .  (1.46) 

(Fig. 3; the sections of the amplitude curves ~ = "j40)n(~ - c%)/3(n = 1, 2, 3) corresponding to stable 
cycles are shown by solid curves). 

Thus, in the most interesting case a = 0, the stable periodic solutions of problem (1.11) depend on 
the parameter ~ as follows. At relative low angular velocities of rotation, namely, ~ < r~ 2, the zero 
e~uilibrium position is stable (no precession). As g2 is increased and passes through its first critical value 
r~ ", a stable cycle (1.12), (1.21) with n = 1 bifurcates from zero; it remains stable throughout the first 
interval (1.45) and becomes unstable when f2 > 11~2/2. 

In the case of cycles (1.12) and (1.21) with n ~ 2, the situation is somewhat different. Each such cycle 
bifurcates from the zero equilibrium position as g2 passes through a critical value 0~ n and initially is, of 
course, unstable. However, when g2 is increased further, it becomes stable, and will certainly remain 
stable in the interval 

4con/3 < ~ < 4(0 n in the case of odd n (1.47) 

4c%/3 < if2 < o.c0 n in the case of even n (1.48) 

Indeed, corresponding to the interval (1.47) we have o ~ (4/3, 4), in which case, for any y t> 0, we 
have the inequality P(o, y) < 0. Thus all the stability conditions (1.43) are automatically satisfied in 
this interval. In the case of even n, the stable interval is shorter (compare conditions (1.47) and (1.48)), 
because R(o) > 0 for 1 ~< o < o, and R(o) < 0 for o > o,. 

We might add that the actual stable ranges of the cycles (1.12) and (1.21) have the following properties. 
First, they are somewhat wider than intervals (1.47) and (1.48) (compare, for example, the second and 
third intervals (1.45) with intervals (1.48) for n = 2 and with (1.47) for n = 3). Second, these ranges 
are certainly finite, since P(o, mZ/n 2) ~ oo as o ~ oo, for any fixed m > 2n/(3. Third, any two neighbouring 
ranges with indices n and n + 1 intersect: this may be verified directly when n ~< 2 (see Fig. 3), and 
when n /> 3 it is a corollary of the fact that the corresponding intervals (1.47) and 
(1.48) intersect. Fourth, and finally, as ~ is increased, inequalities (1.47) and (1.48) begin to hold 
simultaneously for increasingly large numbers n, so that as f2 ~ oo and e ~ 0, the number of coexisting 
stable cycles (1.12), (1.21) of problem (1.11) increases without limit, that is, the bufferness phenomenon 
OCCURS. 

In conclusion, we note that, since increasing f2 yields stable cycles (1.12), and (1.21) with increasingly 
high indices n, while cycles with low indices, conversely, lose their stability, it makes sense here to speak 
of a high-mode bufferness property. It should also be emphasized that, in principle, this increase in the 
number of stable cycles may be achieved only by increasing the shaft length l (with the other parameters 
left fixed and for sufficiently small a), since in that case one has a simultaneous increase in ~2 and a 
decrease in e (see 1.5)). However, in the most realistic parameter range (see (1.46)), we have one or a 
maximum of two stable cycles. 

,3 

n 2 ft .  fl** fl*** fl . . . .  

Fig. 3 

f~ 
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2. THE B U F F E R N E S S  P H E N O M E N O N  IN THE P R O B L E M  OF A 
STRING I N T E R A C T I N G  WITH AN O S C I L L A T O R  

Formulation o f  the problem and description of  the result. Let us consider a self-excited oscillatory system 
(Fig. 4), consisting of a uniform string of length I fixed at its ends, with a generator of mechanical 
vibrations attached to its centre. We will assume that the excited string is characterized by its density 
p, its tension T and the density of friction forces h; the generator is represented by a resonator consisting 
of a mass M, a spring of stiffness k and a non-linear friction element hr. Let Ul and u2 denote the 
displacements of the parts of the string to the left and right of the point l/2, and o the displacement of 
the mass M from its equilibrium position. Then the equations of the vibrations of the string and the 
generator may be written as follows [12]: 

a2uj auj a2uj 
p~t2 +h~-t =T-~x 2 , j= l ,2  

uj Ix=o=U2 Ix=t=O, uj Ix=t/2=u2 Ix=t/2=v(t) (2.1) 

1¢ d2v " dv T(a.2 a.,/I 
a - 7 + h " 7  -+kv= ax ax x= ; ; 2  

It will be assumed that hr(o) = )~ (o 2 - 1), ~. > 0, that is, we will consider a Van der Pol characteristic. 
Then, assuming, by symmetry, that 

u:(t,x) = u2(t, i -  x) = u(t,x), O <~ x <~ l/2 

and suitably normalizing the variables t and x, we transfer from problem (2.1) to the following boundary- 
value problem in the interval 0 ~< x ~< 1 

aZu au a2u 

at 2 ~e-~" t = ax 2 

[ 2u 2,,,_u 11 ulx=°=0' 0--? -+ea(u at +13u =-V~xxx__ ~ 
X=I (2.2) 

Throughout what follows, we will assume that 0 < e ,~ 1, and that the parameters a, 13 and ~/are 
positive and of the order of unity. 

As the phase space of boundary-value problem (2.2) we take 

a,,) ff~(o,I)xCv2'(o,~) U, "~-/ IE 

where 1~2 m (m = 1, 2) are the Sobolev spaces of functions satisfying the first boundary condition in (2.2). 
It can be proved by standard means that the mixed problem corresponding to (2.2) with initial data in 
this phase space has a unique solution: the linear equation in (2.2) is integrated along characteristics, 
and the result is substituted into the boundary conditions (see, e.g. [6]). 

x=O 

///////////// 

% 
x = / / 2  

t hr 

Fig. 4 

x = l  
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Our interest lies in the existence and stability of cycles of problem (2.2) that bifurcate from zero as 
the parameter ct is increased. We note that when e = 0 the stability spectrum of the zero equilibrium 
state of this problem consists of pure imaginary eigenvalues __. icon (n = 1, 2 . . . .  ), where to., n ~> 1, are 
the positive roots of  the equation 

P(to) - (13- to2)sin to + 7to cos to= 0 (2.3) 

numbered in order of increasing magnitude. Corresponding to these eigenvalues are Lyapunov- 
Floquet solutions 

u = exp (+_ito.t) sin to.x (2.4) 

Thus, we will be concerned with t-periodic solutions of problem (2.2) with frequencies close to to.; 
an algorithm to determine the asymptotic behaviour of such solutions will be presented below. 

Following a previously described technique [3] and taking into consideration that when e = 0 problem 
(2.2) has periodic solutions (2.4), we fix an arbitrary n and substitute into (2.2) the series 

u = U O ( ' L X )  + EuI(X,x) + E2U2('~, X)+ . . . .  17= (1 + ESI + E252 + . . . ) t  

u o (1:, x) = ~[exp(ito.x) + exp(-ito.17)] sin to.x 

(2.5) 

(2.6) 

where 

a a 2 ) a2u° au o 
ax 2 u j = - 2 5 1 ~  a x '  u tIX=o = 0  

a-ff~--+l 3u, +~' ~=J= ~l ax2 Ix=l L ox Jl~=, 

The solution will be sought in the same form as the corresponding inhomogeneities, that is, in the 
form 

u = A(x)exp( i to . ' c )  + A(x)exp(-ito.x) + B(x)exp(3ito,,17) + "B(x)exp(-3ito, ,x)  

Proceeding in this way, we obtain the following problems for the coefficients A and B 

A"+ to2.A = to.~(i - 281to.)sin to.x 

A(0) = 0, (13 to2.)A(1) + yA'(l) = [281to. + ia(l  - ~2 sin2to.)]~to, sin to. 

B "  + 9 to2nB = O 

B(0) = 0, ( 6 -  9(°2) B(I) + "tB'(I) = -ito.a~ 3 sin3 to. 

Analysis of these problems yields the equalities 

~2 = (~ _ (x.)/(a sin 2 ton), A(x)  = -(~]2)/x cos ahx + rl sin ton x 

81 = O, B(x)  = --itonOt~3 sin 3 ton sin 3to.xlP(3to.)  

2 2 2 or. = (tOn -13) / (27m,) - ( to .  2 -6 ) / (2 to2 , )+7 /2  

and 1] is an arbitrary real constant; the function P(to) is the same as in (2.3). 
Let us assume that the following conditions are satisfied 

(x > or., P(3to.) * 0 

(2.7) 

(2.8) 

where ~, 8k, k t> 1 are real constants, yet to be determined, and the functions Uk, k >! 1, are odd 
trigonometric polynomials in tonX of degree not higher than 2k + 1. Then, equating the coefficients of 
e, we obtain the following boundary-value problem for determining ul 
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Then ~ can be found from the first equality of (2.7), and consequently the function ul('c,x) is completely 
determined. In principle, this information is sufficient to prove the existence of  a cycle of  problem (2.2) 
in the zeroth approximation (2.6) and to investigate its stability. However, if necessary, this algorithm 
may be extended: at the ruth step, where m ~ 1, the solvability of the boundary-value problem for the 
coefficient of  Um in the first harmonic is achieved by a term of the form 11 sin 0)nx, to within which the 
analogous coefficient in um_ 1 was determined (see (2.7)), and by a correction to the frequency 5=. 
Solvability of the boundary-value problems for the remaining coefficients of the function um is guaranteed 
by the inequalities 

P(k0) , )#0,  k = 3  ..... 2 m + l  

which characterize a certain generality of the position. 
Consider the numbers 

R,~  = 2a,  - ~ - or, m = 1, 2 .... (2.9) 

Theorem 3. Suppose, for some natural number n, condition (2.8) holds and in addition 

P(to,, - 2ton) # 0, m = 1,2 ..... m # n; sin 20), # 0 (2.10) 

Suppose, further, that all the numbers (2.9) are non-zero and that exactly m0 of them are positive. Then 
en > 0 exists such that, for 0 < e ~< en, boundary-value problem (2.2) has a periodic solution with 
asymptotic behaviour (2.5)-(2.7), which is exponentially orbitaUy stable if m0 = 0, and dichotomic if 
m0 > 0, with unstable manifold of  dimension 2m0 + 1. 

A n  algorithm for stability ana~sis. The  original part of  the proof of Theorem 3 consists of  applying 
the algorithm described in [13] for stability analysis to the boundary-value problem 

~2h 3h ~2h 
Ox--~-+ ~ - x  = O--~, hlx=0= 0 

[~--~-+J()2h EOt~[(u2°('C'x)-I)h]+fJh',x=l=-7~xx x=l 

(2.11) 

obtained by linearization of problem (2.2) at the approximate periodic solution constructed above, with 
terms of  order e 2 and higher omitted. 

The gist of the algorithm is as follows. For m # n, we put 

h = lexp(i0)mx)sin 0),,x + ehm(X, x)]exp(EI.t,n'g) 

in (2.11) and compare the coefficients of e. This yields a linear inhomogeneous boundary-value problem 
for hra, while the unknown constant ~ is determined from the condition that this problem be solvable 
in the class of  trigonometric polynomials in to, x, to,,,x. Proceeding in this way, we obtain 

P m = R,.m 1(2txm ), h= = C ° (x) exp(i0)mX) + C + (x)  exp[i(0) m + 2ton )x] + 

+C~,(x)exp[i(0)m - 20), )T] 

C ° = --(i/2)(2pm + I)X COS 0)tax 

C~ (x)  = -ot~2i(0),. + 20). )sin 2 0). sin(to m + 20) . )x /P(0) , .  __ 2o). ) 

The reader's attention is drawn to the fact that the denominators in the formulae for C~ are non-zero 
by virtue of conditions (2.10). We also note that, since 

2 
IP(o~. -4- 2¢q,)V0)m -"> Isin 20).1. m ---> ** 

the role of the inequality sin 2¢o n # 0 also becomes clear (see (2.10)). 
When m = n, i.e. at a natural frequency of the self-excited oscillations, our course of action is slightly 

different. In this case, setting 
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Vj = [oj. n (x, x), 6j. n ('c, x)], j = 0, I, o0. n = exp(ito~'c)sin tonx 

in (2.11) and operating as indicated previously, we verify that 

d l =  d2 = ((zn - o0/(2tzn) 

It is obvious from the structure of the matrix D and from the explicit form of the numbers btm that 
the formal stability properties of problem (2.11) are precisely those described in the statement of the 
theorem. The rigorous proof, and the proof that problem (2.2) has a cycle with the asymptotic behaviour 
we have constructed, are based on methods described in [14, 15], which were further developed in the 
monograph [6]. 

Conclusion. It follows from the statements of Theorem 3 that when a > an a cycle with frequency 
close to ton bifurcates from the zero equilibrium position of problem (2.2); this cycle, increasing in 
amplitude, becomes stable when the parameter (z is increased further, namely, when 

(z > 2ct n - minct m (2.12) 
rail 

Thus, by suitably increasing (x and reducing e, provided the position is sufficiently general with respect 
to the parameters 13 and y, one can guarantee the existence of any previously given finite number of  
stable cycles of problem (2.2); that is, the bufferness phenomenon  is observed. 

We note one further tendency which is characteristic of the problem: if y is reduced, with all other 
parameters held fixed, the bufferness phenomenon breaks down. Put more precisely: in that case problem 
(2.2) is left with a single stable cycle of frequency close to that of the oscillator. Indeed, let us assume 
first that y = 0. Then problem (2.2) is equivalent to the boundary-value problem 

02u Ou 02u 
O-~-+e-~t=O--~-; ulx=o=O, ulx=,=u(t)  (2.13) 

a2u _t)eu 
dt 2 ~ ~o~(o 2 dt + 13o = 0 (2.14) 

But (2.14) is the classical Van der Pol equation, which has a single orbitally exponentially stable cycle 
o = o.(t, e). Substituting this cycle into (2.13) we uniquely determine a periodic function u = 
u.(t,  x, e) with the same period. 

When 0 < )' "~ 1, the situation is in principle the same. To simplify matters, let us assume that 
13 ¢ nn (n = 1, 2 . . . .  ), Then, as is easily seen, Eq. (2.3) has a simple root to = to0(y) : to0(0) = x/-~, 
corresponding to which there is a critical value a = %(y) : %(0) = 0; the other roots ton(Y) : ton(0) = nn 
are also associated with critical values % = %(y) of the parameter (z such that an(Y) ~ + ~  as y ~ 0. 
Consequently, for any fixed (x and 13, when ~/--~ 0 the existence and stability condition (2.12) for a cycle 
will be satisfied only at frequency too. 

Thus, for small y, that is, when the reaction force exerted by the string on the oscillator is weak, one 
observes a capture phenomenon:  a unique periodic regime exists with frequency close to that of 
the external action. On the other hand, when y -> 1 the vibrations in the system are completely 
suppressed. Thus, the bufferness phenomenon in this problem occurs in a certain intermediate range 
of y values. 
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